Design and Development of Potential Tissue Engineering Scaffolds from Structurally Different Longitudinal Parts of a Bovine-Femur
نویسندگان
چکیده
The complex architecture of the cortical part of the bovine-femur was examined to develop potential tissue engineering (TE) scaffolds. Weight-change and X-ray diffraction (XRD) results show that significant phase transformation and morphology conversion of the bone occur at 500-750°C and 750-900°C, respectively. Another breakthrough finding was achieved by determining a sintering condition for the nucleation of hydroxyapatite crystal from bovine bone via XRD technique. Scanning electron microscopy results of morphological growth suggests that the concentration of polymer fibrils increases (or decreases, in case of apatite crystals) from the distal to proximal end of the femur. Energy-dispersive analysis of X-ray, Fourier transform infrared, micro-computer tomography, and mechanical studies of the actual composition also strongly support our microscopic results and firmly indicate the functionally graded material properties of bovine-femur. Bones sintered at 900 and 1000°C show potential properties for soft and hard TE applications, respectively.
منابع مشابه
In Vitro Study of Surface Modified Poly(ethylene glycol)-Impregnated Sintered Bovine Bone Scaffolds on Human Fibroblast Cells
Scaffold design from xenogeneic bone has the potential for tissue engineering (TE). However, major difficulties impede this potential, such as the wide range of properties in natural bone. In this study, sintered cortical bones from different parts of a bovine-femur impregnated with biodegradable poly(ethylene glycol) (PEG) binder by liquid phase adsorption were investigated. Flexural mechanica...
متن کاملEnhancing Ectopic Bone Formation in Canine Masseter Muscle by Loading Mesenchymal Stem Cells onto Natural Bovine Bone Minerals.
Objectives- To assess the ectopic bone formation in canine masseter muscle following the implantation of the natural bovine bone minerals (NBM) loaded with canine mesenchymal stem cells (MSCs).Design- Experimental study.Animals- four mongrel dogs.Procedures- Tripotent MSCs isolated from the canine bone marrow were loaded onto the NBM sponges and allowed to adhere. The cell-loaded scaffolds were...
متن کاملComparison of Purity and Properties of Hydroxyl Carbonate Apatite Extracted from Natural Thigh Bone by Different Physio-chemical Methods
New approaches to extracting natural hydroxyl carbonate apatite from bio waste of bovine bones cortical femur have been developed. To extract pure and natural bio ceramics, three different treatments have been applied: 1-Calcination heat treatment at temperature of 700 , 2-alkaline hydrothermal at temperature of 275 and 3-Pressurized low polarity water at temperature of 250 . Raw bovine bone an...
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملEffect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering
Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...
متن کامل